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MULTIDIMENSIONAL INVERSE SCATTERING FOR FIRST ORDER SYSTEMS! ' GR'i -

by

- Adrian I. Nachman* and MarkJ. Ablowitz .

Department of Mathematics and Computer Science
Clarkson University, Potsdam, New York 13676

ABSTRACT ,

*" A method for solving the inverse problem for a class of multidimensional

first order systems is given. The analysis yields equations which the scatter-

ing data must satisfy; these equations are natural candidates for characterizing

Uadmissible scattering data. The results are used to solve the multidimensional

N-wave resonant interaction equations.

1. Introduction

- The inverse scattering problems for the hyperbolic and elliptic generaliza-

tions in the plane of the m x m AKNS system have been successfully studied in [l]

* and applied to the linearization of several physically significant nonlinear

4 evolution equations (N-wave interaction, Davey-Stewartson, etc.) in two spatial

and one temporal dimensions.

We indicate here how the method used in our investigation of the n-dimensional

Schr'dinger equation [2] can be applied to the study of the inverse problem for

n+1.the operator in R
AI• OP T, ,-, : ................. .. . . . . . . .
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n
."4" L0 •- --Xo Z J x, Q(x (1)

Here J are constant real diagonal m x m matrices (we denote the diagonal

entries of J2 by Jl, , and assume J J $ 0 whenever i j); the matrix-

valued off-diagonal potential Q = (Q'i) may depend on x0 as well as x = (x1,...,xn)

and a = OR + iGI is a complex parameter.

" The operator (1) is associated with the nonlinear system:

_____ i 1 ij ix k
D_"_ - - + Zx(a J B B) + - (a 2. a . )Q Q (2)at a aij ax0  ijZ- x.. a it- Y'jq (2

Bi - B

(with aij - . i, 1 < .s n, for some real B 1 < 2 < n, 1 < i < m). (3:

Even though no traditional scattering operator exists in the case aI  0, the

so-called 5 method (see [2] and references given there) gives a satisfactory

definition of scattering data for L0, along with a systematic inversion pro-

cedure, which we use to solve (2).

A solution of the inverse scattering problem for the hyperbolic case
.

GI = 0 is then obtained by a limiting argument; thus we can avoid a separate

study of a Riemann-Hilbert boundary value problem (which in higher dimensions

may also involve some geometric complications). The main advantage of this

approach is that it yields (from the compatibility conditions associated with

5 in several variables) equations which must be satisfied by the scattering data.

In addition to their importance for the problem of characterizing admissible

scattering data, these equations have several consequences: i) they provide a

formula for reconstructing the potential from the scattering transform purely

by quadratures (in the generic case when no three of the vectors Ji = i'i .. ,J

1 5 i < m, are colinear); ii) they show how one can recover the scattering

transform from (at least small) data given on certain (n+l)-dimensional surfaces

(n+l being the number of variables in Q); iii) they may indicate what other

.,
0 ", ', V •. . w,," . . .,W" ",' ' , ,, . , .".- . , w ' ," ' '
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(possibly non-local) evolution equations could be solvable with the IST

"' developed here; iv) they constitute in themselves a new class of multidimensional

nonlinear systems of integro-differential equations which are linearizable.

2. The Case a, t 0.

We will denote by k = (kl,...,kn) = kR + ikI a point in Cn and will often

* write f(k) instead of f(kR,kI) for an arbitrary function of kR and kI.

As a first step in the 5 procedure we construct a family of solutions of

L =0 of the form £p = 1(xox,k)exp[iEO=l k (x-axoJ )] with p bounded; j will

then satisfy the equation

__& + ,n= 1  u + ian= k Eiu ] = qu. (4)
. x0  tx

The generalized eigenfunctions I,, = (4iJ) we will work with, are obtained by

2" solving the integral equation p,, = I + Ga(Q.), i.e.

!iJ = GiJ (Xo-yo'x-Y'k) (Q(Yo'Y)ua (Yo'Y'k))iJdYodY(
a 6Ij+JJ!n (5)=n+l

where the Green's function is given by

=J ~ -eri(x 0%E + x-E)
G('bxk) )n+ l  n+l _,,,n= i i) d od " (6)0(2r) n+l 1 d[J1+klJ' ]

For brevity we will assume here that Q is such that this integral equation has

na bounded solution u. for all k e C

G. can be computed explicitly by contour integration:

sign(a J 1) i a j(xo,x,k) n J. _

G;J(xo,x,k) = - l.--l e II (x - jT xI ) (7)27ri (x1-aJ x ) =2

n -4A
with (xo,x,k) Z (oa - -T (akxg)). (8)

Th= ntI r f u.W
~The next step is to express )z In terms of pa. We start by writing
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aG and hence 3 NO as a superposition of exponentials:

k kp kp
)G ij ", J i) n i iBoJ(xoI X )

-a - = n ( kk)e T (k,X)dX.(9)
A-.:: @kp 2i la I (27r) n  n 1

n
with oj(XoXk =o iJ (xo,x,k) + E (x -YRJ xo)X and (10)aJ 01a=l kRJ

-'" fIRS - a'j (Yo'Y'k'X) J~d

Ti J(k ,l) e cO (Q(Yoyh)Vl0 (Yoyk))dyody y k(11)" -'- on+l

The calculation of 5i is then based on the following crucial symmetry

property of our Green's function:
iaJ 0.. k,)X,

,,e Grj(xk ) = Gr (xo, XkJk,X)) whenever .JiX,,=O; (12)

e~~ a 0''X0' ''

here k'J(k,X) is the point in gn whose £th component ism0

(A-.jj - ii

(iiJ(k,X)).z = I (k,), + kk + X (13)

Once (12) has been established it can be shown (assuming that (5) admits

no homogeneous solutions) that

"p 5 o (i -j) i iJ (Xo'qX'k))

- (xo,x,k) E JPJP) 6 T X )TiJx(k,X)e , k X
Akp i ,j 2i loil(2r) n na

X 1- x odX,J(k,X)) dX; (14)

(we have denoted by E the m x m matrix with entries Ers = r6 If we now

fix all Y , k p, and apply the (1-dimensional) inhomogeneous Cauchy integral

.o

", . '.Y ' formula. . % ¢ .4 4*
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f (z) )- dz +271 -,--- dz' A di' (15)

to the k pvariable, we can convert (14) pto an integral equation: noting that

P(Xosx.k I when Ik PI-.o- (and denoting k' = (kt.9~..kn) we have

nWl i a ij)(xY x k,X)

P ocYk (IiJ)J (JX, T13(k',Xea 0
la,1I(27r) i~j Pf Pp

X ' a ,x0x,1j'(k',X))E. .dXdk pk'(6

(More generally, one can use (15) with f(z) = p i0(x0 ,x,k+zv), z e C, with k fixed

nand with an arbitrary v le 4 which is not perpendicular to any of the vectors

J1 i-J, i 0 j). The matrix-valued function T (k,X) defined in (11) is our

scattering data and (16) is the inverse scattering recipe for reconstructing

~from T. Once p is found, the potential is easily recovered:

Q~xx)= a [%i J-- (Xosxgk)dkR dk 1 J. (17)

p p p

On the other hand, given an arbitrary T(k,X), to apply the above inversion

procedure we would first need to know that the equations (14) p p =- ,,..n

are compatible; requiring that U4~- 4f yields the following characteriza-
akk~~
r p p r

tion equations for T:

1J j icY iia 1 s.
i i~~ij (i-JJ a ' + a (i-JJ)(, T

pr * P r r 2cy p p r 1 x
r p r p

* .gj[T I: 1 (j, -jJ)(ji H1 6(z...,1.gvr1JiL ) xNpr a 2 0 1 2 )n 1* p p rr f

For compatibility,, (1) j ee nl hldwhnved E ' X =0,hwvroemyas
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verify that Ta when given by (11) satisfies (18) everywhere.

It turns out to be very useful to recast (18) in integral form. It is

enough to keep only the equations (18 )p1. We then look for a parametrization

of the hyperplane {(k,A) e Cn x 1Rn: E-J4 = 0} by new variables (X,woW) E (n-l x
R X Rn so that, in the new coordinates L 3 = , 2 < p < n and

aXp

. (XoXk,) = XW0  + x.w; these requirements determine (up to a translation

of X) the following (invertible) map:

kz = (J - Jl)x >  2; k, = n12(j - N + 1 , --,

1 1 - + 11 nl

JI-J l l -
, (J-J1J) (Jl'JJ.) ),=~ (lJi)(i-i)

.:- i(XZ)I + wj,2> 2; X(X) I - w21.a 1J : 1 0iIJ1

(19)

To use (15) as before, we need the limit of Tij for xp I large (and X., X p,

w0 1 w fixed); this turns out to depend on whether for some r ij we have

(Jr"j')(Jp-Jp) = (j1 jj)(JrJj) (20)

For brevity we consider only two cases (the only ones arising in the study of

(2) - see the appendix): case I-relation (20) does not hold for any distinct i,j,r

and any p $ 1; and case II-relation (20) holds for all i,j,r,p (in other words, the

vectors Jl ,**,jm all lie on the same line in R n) In the generic case I we

have

lim TiJ(x,WoW) = QiJ(wow) (21)1Xp1-

and (18)'j becomes

13 [T") pp1 a](X' w =* p a () ' -'(.JJ - dX dX Qi(wo,W) (22)ia 9 W O 9 Tr f f X p - p Ip

'-" where

.e__
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SiJ(wo,w) Jieix x Qi3(xox) dxodx and X' (X,'-.Xp, .',Xn).

If (20) holds for some r j then (21) need not be true (see (7), (8), (11)).

* In case II we have D 0 for all p, 2 < p < n; this, together with Liouville's
axp

theorem, allows us to replace (22)I by

T1j(Xwow) = Tj(wo,w). (22)Ii

In case I we conjecture (as in [2 ]) that the main condition needed to

characterize the scattering data is that IJ[T ](X,WoW ) be independent of

X and p and have suitable decay properties in (wow); furthermore, given a T

which passes this admissibility test we can (re)construct a local potential Q

simply as the inverse Fourier transform of I[T].

From (22)iI we see that T1i is completely determined by its values on the

(n+l)-dimensional surface X = X0; the analogue of this in case I is the follow-

ing: given TI 3(XWW) = GiJ(wow), 1 i,j m we have (from (22)I)~ij
T3J(xwow) = Gi ,(w0 w) + .1 i Np l XW ) NiJ[T0 ](X a Wn'W)

XOp - X ) I

(23)

which (at least for small G) could be solved to find T everywhere.

3. The case a = -1.

If we formally substitute a = -1 in (6) we find that, away from the

hyperplanes Ei = {k . n : n=(J I  = 0} the eigenfunction 1i 1 (xox,k)

is well-defined and holomorphic. Thus it appears that the inverse problem for

the hyperbolic system L.I could be regarded as a Riemann-Hilbert problem with

data on the hyperplanes Ei' 1 5 i < j < m. We prefer to obtain an inversion

procedure from our results for 0I 0. There seems to be little advantage in
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studying the limit of (XosXk) as a -1 (it leads us back to an analysis

of singularities on the hyperplanes E. i); we work instead with the limit of

4I0(Xo,x,kR,IkI), with kI now playing the role of a parameter. From (6) we find

lim Ga (xO,x,kR,aIkI) = GL(xoX,kRkI)
-,.-I+iO

.,n=-i 1 e( 1 .:1 E +(k k i( -j)]) n iJZ+(k k i jR_ R RIf, . Xd- ]) e(z = [J RR(k R 2 ) )])

(2w)n+l +1 EO-rE= n= +kR O-.=l [J A (J -JI)

x e (XOEO + X.0 dE0 dE, (24)

with 6(.) the Heaviside function; correspondingly, lim jj(xOx,kR,alkI) =
a 0 -l+iO

= L(xo,x,kR,kI) where 1L solves the integral equation p L I + GL(QiL). From

(24) we see that PL(xOx,kR,kI) is a solution of

ax n i RI1 = Q1 (25)

-.2. .

n
for every value of the parameter kI in J n. Our scattering data is now

Tv -, (k ke- 'i j (X ,~ R Dk  ,oX )jT J(KR'KI'X) = ff+l e 8~J(XOX~kR~kI~A(Q(xox)PL(xo,xkRk) )idxodx
(26)

'0

w it-"'. i ( j -(-1 (kR -kn ))+(x +J1x)XO .) Taking% %'' "i" with 6 (Xo,X,kk,)-.=[J-)(ol 4(k -k

limits in (14) we find the reconstruction equations for w:

,-.OI<-.' + +18(k I -k' ) e(k' -kl )

x,kRk I )  I +(2W)n i,(J)J g- Rp'Rp i ]6(EJ x
- "

xi '5- ' , (27X
x weL O DP Xw-,j(k~ jX) ~djdi, (7

L D_ IL i
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JR-r no k + k + X and (k) 2. = k2

where now (k(k,kX))R I R I L 2 . 21 k

To write the characterization equations for Tij we introduce new variables

(suggested by the limit of (19)) (XRXIwow) s F n - l to parametrize the

hyperplane ZJ = 0 in F 3n as follows:
2.2

,w?>.k~ j i)~ k l  n i JR ln I
k, Jl ) > 2; k ( - j)XR + ------ (W 1 iJw

2 1 R 2. 3jn Oj1 Z t kIk

ki= (J -Jd)X, n 2 + jj w, (28)
Z9 1 > 2; ki -j1

. " _ j i j . (j jj (jjg) j

(JI-Jl) )(J-J) R )RZ' ji, )+W > 2; =  I t jl -Xl TI W

2. (XR X1 'Y2. 2. 21~ 1 (XRXI -T

Then under the assumptions of case I in section 2, the limit of the equations

(22)i yields:
l_[~e(~p ~p) e(X -x )

Q e(x1 P Xj P + 2(x .P ) x' dxT
L1J(XR'XI'wo'w) QiJ(wo'w) + T' XR-XR+iO XR-XRp-iO NpI TL](,w w)dX

Pp p ,pwXdPpdp

(29) I

with NpI[TL] given by a slight modification of (18). In case II we have

T~j(×RlW,): T Jwo, )  (29)11

LJ (XR9XI~wOw L= 1)

, As in section 2, we can now use (29)i to characterize admissible TL, (re)con-

struct Q, as well as recover TL from data given on XR = const., XI = const.

It should be pointed out that once the family of Green's functions GL has

been chosen, all the above results can be derived without recourse to our limit-

,. ing arguments (v k 1L can be expressed in terms of PL using the appropriate

, symmetry property of GL and the analytic behaviour of PL for k, large - needed to

establish (27)- follows from (24); these analytic properties together with the

%* #..> P ..
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2 2
compatibility requirements imply-- (2))

r p p r

4. Relation between TL and the Scattering Operator (a=- 1)

To fix notation we sketch an elementary definition of the scattering

n moperator associated with L_1. When Q _:0, given f : R * R , the solution of

the Cauchy problem L_ IUNIX0 ) =0, u(O,x) = f(x) is

&' (xox) = f1 (x +X J1 ***,Xn+X J1) 1 < m, which we write as u(x0,x)=f(x+x J).0 1 n0n0

When Q is, say, smooth and of compact support, given any (reasonable)

f:Rn-~ Rm there is a unique u so-lution of L u = 0 with u(x0,x) = f(x+x J)

00

> 0. We write g =Sf. On the Fourier transform side S can be written as

01

Sf(0 = f ( + )n Tn S( ,kR)f(kR )dk R.30
(2r R

The question we would like to address is how to recover T L (and hence Q) given

S(,R). Torlt L an (,R) it turns out that we need to relate 11Land

the eigenfunction 1J(xO~x,kR) corresponding to the "Volterra" Green's function

G'~O~~R) = e(xO)exp[ ~..(X +xJJ)kR n1 (31)
z ~ ~ £ z ZR P

We start with the identity

1L- (GL- G)(QIL + G(Q( _L1)). (32)

write Glj-Gl3 as a superposition of exp(ial)) and use a suitable symmetry pro-

*perty of G. The main result is the following linear equation for TL given S:

Tij (k X = 
3 k'J(k ~IX),kR 1n r

Sli(k J(k k A), J(k kAIX))Tii(k kIX)dX1 (33)RR'I RR9I'L R'I
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where kJ(k R,kiX) stands for the real part of k'J

5. Applications to Nonlinear Equations

The equations (2) are the compatibility conditions (cf. [ ]) for the

Lax pair:

L 0 and +,n=I B A (34

a 't 1 9%- B x (

the matrices B, 1 < 2 < n, are constant real diagonal and

A l a(t,XX)oX) with aij given by (3). The restrictions imposed

by (3) on the matrices J , 1 5. 5 n, are discussed in the appendix. To find

the time dependence of the scattering data corresponding to (2), we set

.- ~ U= :i exp[i n= k (x -axoJ -tB )]; then P satisfies (4) as well as

B k[B+,] - Ap =0. (35)
-.""_Ap a- + E 2 ka,: I Bk Zx [B,:I35

Applying the operator A to both sides of the equation (14) we find (when aI # 0)

c' (t,k,X) = i= [Bj k  ij (36)at Z Z=I _ Bk^ (k,X,)]T J(t,k,X,). (6

For the case a = -1 the equations (obtained as limits of (36) or by a parallel

derivation) are

aT''L ,X) -B 'k () (37)
=Rt Rt kiR p zlzBR kR,kL,,)]Stk(k I )

..

Thus, when a = -1, we can apply the inverse scattering procedure together

with (37) to construct the solution to the Cauchy problem for (2). Note that

TL(t,kR,kl,A) as given by (37) satisfies the characterization equations if

TL(O,kR,kI,X) does.

When a I 0 the Cauchy problem for (2) is ill-posed; however (by analogy

to the corresponding linear problem) we can use inverse scattering to solve (2)

as follows: given Q(O,xox) it can be decomposed into Q+(O,xo,x) + Q_(O,xox)

.S_

5,.. .'",':"".%)" ,,"... . 'K"";,";5 """ .p*','' ;. .. *,....'.,, ., .','' ,. .-. ,.,.',,,V.... ., "'' "'}
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where Q+(O,xox) extends to a function Q+(t,xosx) satisfying (2) in the half-

space t > 0, while Q (O,xox) extends to a function satisfying (2) in the

half-space t < 0. Assume for simplicity that alaij > 0 for all i $ i. Given Q

define Q+ by Q+(O, = (w o)Q(O,wow). If T is the scattering transform

of Q then from the direct problem we find TiJ(O,X,wow) = 0 for w0 > 0; thus
~iJt

for t > 0 we can define (see (36)) T (t,X,Wow) by

T J(t,xWoW ) = exp[it lj)]TiJ(O,x~w0,w) = (see (3), (13) and (19))

2 ' a~ w. n ji .i, )]iJo.8
= exp[it(- w0 + (=l(aij 8-)w ,X,Wo,W)38)

Since the expression in the exponential does not depend on X and since its real*
part is nonpositive if t > 0, TlJ(t,x,wow) satisfies the characterization

equations (29) so inverse scattering should yield the desired potential

Q+(t,xo,x); similarly we can construct Q_(t,xox) solution of (2) for t < 0.
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Appendi x

We need to find the restrictions imposed on the choice of matrices J,

I l < n, by the existence of (a..) and B, I < t 5 n satisfying (3).

If (3) holds then the matrix (a. ) is symmetric and
Jii

ai - apj = (a.j-apj) - for every k and every i,j,p distinct . (Al)
if) pi 13 pj jp~ji

(Conversely, if (Al) holds with (a..) symmetric then B., I Z < n can be

found so that (3) is satisfied.) Note that if aip t apj, (Al) forces J , ji,

JP to be colinear. There are two cases:

I.- I a. = a . for all ijp distinct. Then (Al) puts no restriction on J L;i a~~~~ip apj3 o l ~~ itnt

in particular they can be chosen so that (20) does not hold for any distinct

i,j,r and p 1. The system (2) is linear in this case.

-'11 For some ioJopo distinct aioPo a . We show that in this case the

vectors j',...,j M must all be colinear. Fromii (Al) we already know that

. i0 Jo PO
3 , J , are colinear. For any r t ioJo,p0 one of the following must be

true

(i) a 0 arj, (ii) ari0  . , (iii) ar 0  a a (A2)i 0a ir 0 iOPo0ro jp

(for if not a = a a = a contradicting our assumption). In either,. OPo 0 ario0 ro 0 apoJo i
the possibilities A2 ill be on the line passing through

this will be true for any r, 1 < r < m. (Conversely, given 3 ,J ,...,M

.. colinear with J J we can construct (a) symmetric satisfying II and (Al)).

It follows that whenever (2) is not linear, the matrix having J1,J2,jm

as rows has rank at most 2; thus if n > 3 its columns (the diagonals of the matrices

d k in MI) must be linearly dependent and then the inverse scattering problem for L

can also be solved by reducing it to a lower dimensional one. On the other hand,

since the characterization equations are trivial (i.e. N(T) = 0) in this case,

it seems reasonable to expect that other (possibly non-local) nonlinear equations

01'~a
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can be found which would be compatible with (22 )11
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